
LightGNN: Simple Graph Neural Network for Recommendation
Guoxuan Chen

University of Hong Kong
Hong Kong, China

guoxchen@foxmail.com

Lianghao Xia
University of Hong Kong

Hong Kong, China
aka_xia@foxmail.com

Chao Huang∗
University of Hong Kong

Hong Kong, China
chaohuang75@gmail.com

Abstract
Graph neural networks (GNNs) have demonstrated superior per-
formance in collaborative recommendation through their ability to
conduct high-order representation smoothing, effectively capturing
structural information within users’ interaction patterns. However,
existing GNN paradigms face significant challenges in scalability
and robustness when handling large-scale, noisy, and real-world
datasets. To address these challenges, we present LightGNN, a light-
weight and distillation-based GNN pruning framework designed to
substantially reduce model complexity while preserving essential
collaboration modeling capabilities. Our LightGNN framework in-
troduces a computationally efficient pruningmodule that adaptively
identifies and removes redundant edges and embedding entries for
model compression. The framework is guided by a resource-friendly
hierarchical knowledge distillation objective, whose intermediate
layer augments the observed graph to maintain performance, par-
ticularly in high-rate compression scenarios. Extensive experiments
on public datasets demonstrate LightGNN’s effectiveness, signifi-
cantly improving both computational efficiency and recommenda-
tion accuracy. Notably, LightGNN achieves an 80% reduction in edge
count and 90% reduction in embedding entries while maintaining
performance comparable to more complex state-of-the-art base-
lines. The implementation of our LightGNN framework is available
at the github repository: https://github.com/HKUDS/LightGNN.

CCS Concepts
• Information systems→ Recommender systems.

Keywords
Graph Learning, Recommendation, Knowledge Distillation

ACM Reference Format:
Guoxuan Chen, Lianghao Xia, and Chao Huang. 2025. LightGNN: Simple
GraphNeural Network for Recommendation. In Proceedings of the Eighteenth
ACM International Conference on Web Search and Data Mining (WSDM ’25),
March 10–14, 2025, Hannover, Germany. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3701551.3703536

∗Chao Huang is the Corresponding Author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WSDM ’25, March 10–14, 2025, Hannover, Germany
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1329-3/25/03
https://doi.org/10.1145/3701551.3703536

1 Introduction
Recommender systems [7, 38] have become indispensable in mod-
ern online platforms, effectively addressing information overload
and enhancing user engagement through personalized service de-
livery. At the core of these systems, Collaborative Filtering (CF) [14,
20] stands as a dominant paradigm, leveraging users’ historical
interactions to model latent preferences for behavior prediction.

The evolution of collaborative filtering has spawned diverse ap-
proaches, from classical matrix factorization methods (e.g. [13]) to
sophisticated neural architectures (e.g. [9]). Among these develop-
ments, Graph Neural Networks (GNNs) have emerged as particu-
larly powerful tools for CF-based recommendation, distinguished
by their ability to capture complex, high-order interaction patterns
through iterative embedding smoothing. Pioneering works include
NGCF [25], which introduced graph convolutional networks (GCNs)
to model user-item relationships, and LightGCN [8], which simpli-
fies GCNs to their essential components for recommendation. To ad-
dress the challenge of sparse interactions in GNN-based recommen-
dation, researchers have developed innovative self-supervised learn-
ing (SSL) techniques, including SGL [27], NCL [15], and HCCF [30].
These approaches significantly enhance recommendation accuracy
by leveraging self-augmented supervision signals.

Despite significant advancements in GNNs, we would like to
emphasize two inherent limitations that continue to challenge GNN-
based CF models. i) Limited scalability of GNNs: Online recom-
mendation services typically handle vast amounts of relational
data (e.g., millions of interactions). This causes the size of user-
item graphs to increase dramatically, resulting in a considerable
number of information propagation operations within GNNs. Such
scalability issues present challenges concerning storage, computa-
tional time, and memory requirements. Furthermore, GNN-based
CF relies heavily on id-corresponding embeddings for user and
item representation [8], with the complexity of these embeddings
directly linked to the growing number of users and items, incur-
ring significant memory costs. ii) Presence of pervasive noise in
interaction graphs: Collaborative recommenders mainly utilize
users’ implicit feedback, such as clicks and purchases, because of its
abundance. However, these interaction records often contain sub-
stantial noise that diverges from users’ true preferences, including
misclicks and popularity biases [23]. Although some existing meth-
ods address scalability through techniques like random dropping
(e.g., PinSage [33]) or knowledge distillation (KD) (e.g., SimRec [29]),
they remain susceptible to misinformation, which can result in in-
accurate predictions from their compressed recommenders.

To address these limitations, this paper proposes pruning redun-
dant and noisy components in GNNs, specifically targeting graph
edges and embedding entries. We aim to enhance model scalabil-
ity while preserving essential user preference features. However,

ar
X

iv
:2

50
1.

03
22

8v
3

 [
cs

.I
R

]
 4

 F
eb

 2
02

5

https://github.com/HKUDS/LightGNN
https://doi.org/10.1145/3701551.3703536
https://doi.org/10.1145/3701551.3703536

WSDM ’25, March 10–14, 2025, Hannover, Germany Guoxuan Chen, Lianghao Xia, and Chao Huang

achieving this objective presents non-trivial challenges, outlined
as:
• How to identify the graph edges and embedding entries that are
genuinely redundant or noisy in the user-item interaction graph?

• How to maintain the high performance of GNN-based CF when
significant structural and node-specific information is removed?

As illustrated in Figure 1(a), a considerable proportion of items that
users interact with fall into the same category, leading to redundant
information about users’ preferences. By identifying and removing
this redundancy from both structures and parameters, we can sig-
nificantly reduce the complexity of GNN-based CF. Additionally,
many observed interactions represent noise linked to users’ nega-
tive feedback, as revealed by the review text. This noise can disrupt
the preference modeling of existing compressed CF methods, which
often fail to explicitly identify such noisy information. Regarding
the second challenge, depicted in Figure 1(b), traditional knowledge
distillation approaches struggle to effectively maintain performance
when compressing the GNN model at a high ratio due to the lim-
ited number of edges and parameters. In contrast, our innovative
hierarchical KD offers enhanced preservation capabilities.

Fully aware of these challenges, we introduce a GNN pruning
framework called LightGNN that facilitates efficient and denoised
recommendations. LightGNN incorporates graph structure learning
to explicitly assess the likelihood of redundancy or noise for each
edge and embedding entry. This learning process is supervised in
an end-to-end fashion, leveraging the downstream recommenda-
tion task alongside a hierarchical knowledge distillation paradigm.
Inspired by the advantages of global relation learning in recommen-
dation [30], our KD approach features an intermediate distillation
layer that utilizes high-order relations to enhance candidate edges
in the compressed model. This augmentation improves the model’s
capacity to maintain recommendation performance under high-
rate compression. Through innovative importance distillation and
prediction-level and embedding-level alignments, our hierarchical
knowledge distillation enriches learnable pruning with abundant
supervisory signals, boosting its compression capability.

The contributions of our LightGNN are summarized as follows:
• We introduce a novel GNN pruning framework for recommenda-
tion, explicitly identifying and eliminating redundancy and noise
in GNNs to enable efficient and denoised recommendations.

• Our LightGNN framework integrates an innovative hierarchical
knowledge distillation paradigm, seamlessly compressing GNNs
at high ratios while preserving prediction accuracy.

• We conduct extensive experiments to demonstrate the superiority
of LightGNN in terms of recommendation accuracy, inference
efficiency, model robustness, and interpretability.

2 GNN-based Collaborative Filtering
Graph neural network (GNN) has been shown a most effective
solution to collaborative filtering (CF) [4, 28]. The CF task typically
involves a user setU (|U| = 𝐼), an item setV (|V| = 𝐽), and a user-
item interaction matrix A ∈ R𝐼× 𝐽 . For a user 𝑢𝑖 ∈ U and an item
𝑣 𝑗 ∈ V , the entry 𝑎𝑖, 𝑗 ∈ A equals 1 if user 𝑢𝑖 has interacted with
item 𝑣 𝑗 , otherwise 𝑎𝑖, 𝑗 = 0. Common interactions include users’
rating, views, and purchases. GNN-based CF methods construct

mediocre

taste but too

expensive!

Very delicious and

generous cup size…

good taste,

and excellent

interior

decoration

Really

generous

portion

size!

Just a regular Italian

restaurant…nothing

special

Extremely

delicious

seafood

spaghetti!
Highly

distinctive

Chinese

restaurant!

Small portion

and too salty!

Ordinary

Chinese

food

Similar

Chinese food

.no distinctive

features

C
h

in
es

e
 F

o
o

d

(a) (b)

Figure 1: Illustrations depicting (a) redundant and noisy user
interactions, with red text indicating noisy feedback, and (b)
the superior performance retention of LightGNN compared
to vanilla KD, especially under high-rate pruning.

the user-item graph based on the interaction matrix A. This graph
can be denoted by G = (U,V, E), where U,V serve as the graph
vertices, and E denotes the edge set. For each (𝑢𝑖 , 𝑣 𝑗) that satisfies
𝑎𝑖, 𝑗 = 1, there exists bidirectional edges (𝑢𝑖 , 𝑣 𝑗), (𝑣 𝑗 , 𝑢𝑖) ∈ E.

Based on the user-item graph G, GNNs conduct information
propagation to smooth user/item embeddings for better reflecting
the interaction data. Specifically, it firstly assigns initial embed-
dings e𝑖 , e𝑗 ∈ R𝑑 to each user 𝑢𝑖 and item 𝑣 𝑗 , respectively. Here 𝑑
represents the hidden dimensionality. Then it iteratively propagates
each node’s embedding to its neighboring nodes for representation
smoothing. Take the widely applied LightGCN [8] as an example,
the embeddings for user 𝑢𝑖 and item 𝑣 𝑗 in the 𝑙-th iteration are:

e𝑖,𝑙 =
∑︁

(𝑣𝑗 ,𝑢𝑖) ∈E

1√︁
𝑑𝑖𝑑 𝑗

e𝑗,𝑙−1, e𝑗,𝑙 =
∑︁

(𝑢𝑖 ,𝑣𝑗) ∈E

1√︁
𝑑𝑖𝑑 𝑗

e𝑖,𝑙−1 (1)

where e𝑖,𝑙 , e𝑖,𝑙−1 ∈ R𝑑 denote the embedding vectors for 𝑢𝑖 in the
𝑙-th and the (𝑙 − 1)-th iterations, and analogous notations are used
in e𝑗,𝑙 , e𝑗,𝑙−1. The 0-th embedding vectors e𝑖,0, e𝑗,0 uses the initial
embeddings e𝑖 , e𝑗 . And 𝑑𝑖 , 𝑑 𝑗 represent the degrees of nodes 𝑢𝑖 , 𝑣 𝑗 ,
for Lapalacian normalization. After a total 𝐿 iterations, GNN-based
CF aggregates the multi-order embeddings for final representations
ē𝑖 , ē𝑗 ∈ R𝑑 and user-item relation predictions 𝑦𝑖, 𝑗 , as follows:

𝑦𝑖, 𝑗 = ē⊤𝑖 ē𝑗 , ē𝑖 =
𝐿∑︁
𝑙=0

e𝑖,𝑙 , ē𝑗 =
𝐿∑︁
𝑙=0

e𝑗,𝑙 (2)

With the prediction scores 𝑦𝑖, 𝑗 , the GNN models are optimized by
minimizing the BPR loss function [18] over all positive user-item
pairs (𝑢𝑖 , 𝑣 𝑗+) ∈ E, and sampled negative pairs (𝑢𝑖 , 𝑣 𝑗−), as follows:

L𝑏𝑝𝑟 =
∑︁

(𝑢𝑖 ,𝑣𝑗+ ,𝑣𝑗−)
− log sigm(𝑦𝑖, 𝑗+ − 𝑦𝑖, 𝑗−) (3)

Though the above GNN framework achieves state-of-the-art per-
formance in recommendation, its scalability is limited by the large-
scale interaction graph and embedding table. In light of this, this
paper proposes LightGNN aiming to effectively prune the GNN
model for efficient graph neural collaborative filtering.

3 Methodology
This section goes through the proposed LightGNN to show the
technical details. The overall framework is illustrated in Figure 2.

LightGNN: Simple Graph Neural Network for Recommendation WSDM ’25, March 10–14, 2025, Hannover, Germany

Teacher Model Intermediate KD Student Model

Hierarchical Knowledge Distillation

Bilevel Alignment Structure Augmentation Importance Distillation

Prediction-Level Distillation

Embedding-Level Distillation

Bilevel Alignment

H
ig

h
-o

rd
er

E
m

b
ed

d
in

g
s

(1,0,0,1)

Similar Mask

L
ay

er=
0

Pull Close

F
in

al ത𝐄
𝑠

Generally Push Away

(1,0,0,1)

Uniformity Reg

Learned Weights 𝐖t

GNN Pruning

Edge Pruning

𝑤

Layer Pruning

Embedding Pruning

𝐖,𝐄Learning

Original Edges

（Weighted） Augmented Edges

（Weighted）

Structure Augment.

High-order Edges

Original Edges

Augment

Importance Distill.

Intermediate Layer

Student Model

𝑤𝑖,𝑗
𝑡 ത𝐞𝑖

𝑡⊤ത𝐞𝑗
𝑡

Weighted Edges

No Edge

Weights

Predictions

L
ay

er=
0

F
in

al ത𝐄
𝑠

L
ay

er=
0

F
in

al ത𝐄
𝑠

Figure 2: Overall framework of the proposed LightGNN model.

3.1 Graph Neural Network Pruning
Inspired by the lottery ticket hypothesis for GNNs [5, 6], we propose
to use only a subset of GNN’s parameters that maximally preserve
the model functionality, to improve its efficiency. Specifically, the
time complexity for a typical GNN model as aforementioned is
O(𝐿×|E|×𝑑), and the space complexity is correspondingly O(|E|+
(𝐼 + 𝐽) × 𝑑). Therefore by reducing the number of edges |E |, and
the number of non-zero elements in the 𝑑 embedding dimensions,
our LightGNN is able to optimize both the computational efficiency
and memory efficiency. To achieve this, it is essential to identify the
noisy and redundant parts in the edges E and the embedding table
E = {e𝑖 , e𝑗 |𝑢𝑖 ∈ U, 𝑣 𝑗 ∈ V}, to prevent performance degradation.

3.1.1 Edge Pruning. To this end, LightGNN employs a sparse
weight matrix W ∈ R𝐼× 𝐽 for edge pruning. If an edge (𝑢𝑖 , 𝑣 𝑗) is
a candidate for pruning, the corresponding weight𝑤𝑖, 𝑗 inW is a
learnable parameter. Otherwise𝑤𝑖, 𝑗 is set as 0 and is not optimized.
With the weight matrix W, the graph information propagation
process for the pruned GNN is conducted as follows:

EU,𝑙 = D− 1
2

U · (A ⊙ W) · D− 1
2

V · EV,𝑙−1 + EU,𝑙−1 (4)
where ⊙ denotes the element-wise product operator which injects
the learnable weights W into the information propagation process.
Here EU,𝑙 ,EU,𝑙−1 ∈ R𝐼×𝑑 denote the user embedding table in
the 𝑙-th and the (𝑙 − 1)-th iteration, and EV,𝑙−1 ∈ R𝐽 ×𝑑 denotes
the embedding matrix for items in the (𝑙 − 1)-th iteration. And
DU ∈ R𝐼×𝐼 ,DV ∈ R𝐽 × 𝐽 denote the degree matrices for users and
items, respectively. The information propagation to obtain higher-
order item embeddings EV,𝑙 is analogously using (A ⊙ W)⊤.

Based on the parametric information propagation, the weights
W participate in the calculation for final user/item embeddings,
which are then used for predictions and loss calculations. Through
the back propagation,W is tuned to reflect the importance of edges,
wherein larger |𝑤𝑖, 𝑗 | denotes the edge (𝑢𝑖 , 𝑣 𝑗) having a larger in-
fluence on producing better recommendation results. In light of
this property, our LightGNN framework prunes the less important
edges (noises or redundancies) after training, specifically by setting
the 𝜌% candidate edges with the least importance to 0 (see 3.2.3),
where 𝜌 ∈ (0, 100) denotes the proportion to drop. The pruning
algorithm follows an iterative manner with multiple runs. In each
run, LightGNN first conducts parameter optimization for model
training and pruning weight tuning, and then prunes the GNN by
dropping edges and other parameters.

3.1.2 Embedding and Layer Pruning. As indicated by the com-
plexity analysis for GNNs, the parameters for representing users
and items (i.e. embeddings E) also contribute significantly to the

running time and the memory costs of GNNs. Therefore LightGNN
follows the similar pruning algorithm for edges to prune the entries
in the embedding matrix E. As the scalar parameters in E already re-
flect the importance of their corresponding entries, LightGNN does
not employ extra pruning weights for embeddings. Analogously,
LightGNN alternately conducts model training and parameter prun-
ing with ratio 𝜌′% according to the absolute value |𝑒𝑖,𝑑 ′ |, where
𝑒𝑖,𝑑 ′ represents the 𝑑′-th dimension in 𝑖’s embedding vector.

In addition to the edges and embeddings, the time complexity
of GNNs suggests that the number of graph propagation layers 𝐿
also greatly impacts the computation time of GNNs. Moreover, in
practice, 𝐿 is also significant to influence the temporary memory
costs for stacking the intermediate results. Thus our LightGNN
further reduces the number of graph iterations 𝐿 for efficiency,
which also alleviates the over-smoothing effect of GNNs [30].

3.2 Hierarchical Knowledge Distillation
3.2.1 Bilevel Alignment. Motivated by the strength of knowl-
edge distillation (KD) in compressing the learned knowledge of
advanced models into light-weight architectures [29], the proposed
LightGNN develops a hierarchical knowledge distillation frame-
work to maximally retain the original high performance in the
pruned GNN model. Taking a well-trained GNN model (e.g. Light-
GCN [8]) as the teacher, LightGNN aligns the student model with
pruned structures, embeddings, and GNN layers to the teacher
model with respect to both hidden embeddings and final predic-
tions. In the prediction level, the following loss function is applied:

L𝑝−𝑘𝑑 =
∑︁
v

−
(
𝜎 (𝜖𝑡v/𝜏) · log𝜎 (𝜖𝑠v/𝜏) + 𝜎 (𝜖𝑡v/𝜏)) · log𝜎 (𝜖𝑠v/𝜏)

)
where v = (𝑢𝑖 , 𝑣 𝑗1 , 𝑣 𝑗2), 𝜎 (𝑥) = 1 − 𝜎 (𝑥), 𝜖∗v = 𝑦∗

𝑖, 𝑗1 − 𝑦∗
𝑖, 𝑗2 (5)

Here (𝑢𝑖 , 𝑣 𝑗1 , 𝑣 𝑗2) denotes the randomly sampled training tuples
analogous to the BPR loss, while 𝑣 𝑗1 and 𝑣 𝑗2 are not fixed to be
positive or negative samples. 𝜎 (·) denotes the sigmoid function to
constrain the values to be within (0, 1). And 𝜏 ∈ R is known as the
temperature coefficient [10]. We denote the predictions made by the
student model using the superscript 𝑠 , and denote the predictions
made by the teacher model with the superscript 𝑡 . With this training
objective, our LightGNN framework encourages the pruned GNN
model to mimic the predictions made by the complete GNN model
with all the edges, embedding entries and propagation iterations,
to obtain the teacher’s prediction ability as much as possible.

Besides the prediction-level alignment, our LightGNN aligns
the teacher model and the student model by treating their learned
embeddings as paired data views for contrastive learning. In specific,

WSDM ’25, March 10–14, 2025, Hannover, Germany Guoxuan Chen, Lianghao Xia, and Chao Huang

the following infoNCE loss function [16] is applied:

L𝑒−𝑘𝑑 = −
∑︁

𝑢𝑖 ∈U
log softmax(SU , 𝑢𝑖) −

∑︁
𝑣𝑗 ∈V

log softmax(SV , 𝑣 𝑗)

where softmax(SU , 𝑢𝑖) =
exp 𝑠𝑖,𝑖∑
𝑢𝑖′ exp 𝑠𝑖′,𝑖

, 𝑠𝑖′,𝑖 = cos(ē𝑠𝑖′ , ē𝑡𝑖) (6)

Here 𝑠𝑖′,𝑖 ∈ SU denotes the cosine similarity between the final em-
beddings ē𝑠

𝑖′ , ē
𝑡
𝑖
for the users 𝑢𝑖′ and 𝑢𝑖 , given by the student model

and the teacher model, respectively. The item-side embedding-level
KD is calculated analogously. With this embedding-level KD objec-
tive, our LightGNN can better guide the pruned GNN to preserve
the essential graph structures and parameters in a deeper level.

3.2.2 Intermediate KD Layer for Structure Augmentation.
Due to the sparsity nature of the user-item interaction data, some
key preference patterns are not reflected by the direct neighboring
relations but preserved by the high-order relations. To facilitate
the capturing of these high-order connections during our edge
pruning, we augment the knowledge distillation of LightGNN with
an intermediate KD layer model for edge augmentation.

To be specific, LightGNN conducts a two-stage distillation, firstly
from the original GNN to an augmented GNN, and then from the
augmented GNN to the final pruned GNN. The augmented GNN
does not prune any edges or embedding entries, but instead in-
cludes the high-order connections as augmented edges. Formally,
the augmented GNN has the same model architecture (Eq. 4) as the
student but works over the following augmented interaction graph:

Ḡ = (U,V, Ē), Ē = {(𝑢𝑖 , 𝑣 𝑗), (𝑣 𝑗 , 𝑢𝑖) |𝑎 (ℎ)𝑖, 𝑗
≠ 0} (7)

where 𝑎 (ℎ)
𝑖, 𝑗

denotes the entry for (𝑢𝑖 , 𝑣 𝑗) in the ℎ-th power of the
symmetric adjacent matrix with self loop [25]. In other words, edge
(𝑢𝑖 , 𝑣 𝑗) exists in the augmented graph Ḡ if 𝑢𝑖 can be connected to
𝑣 𝑗 via any path with its length shorter than or equal to ℎ hops in the
original graph. With this structure augmentation, the augmented
GNN directly includes the high-order connections in the model
parameters, to prevent losing the key high-order patterns in radical
edge pruning. During the intermediate KD, the augmented GNN is
supervised by the original GNN (no weights), not only to mimic its
accurate predictions, but also to learn proper weightsW𝑡 for all the
edges. The intermediate KD layer prevents the augmented larger
graph from introducing noises using the supervision of the bilevel
distillation from original GNN and the adaptive edge weights.

3.2.3 ImportanceDistillation for Pruning. After the first knowl-
edge distillation from the original GNN to the augmented GNN
model, our LightGNN then distills its learned knowledge with struc-
ture augmentation to the final pruned GNN model. Apart from the
aforementioned bilevel alignment, LightGNN further enhances this
second KD with the importance distillation, which explicitly lever-
ages the learned importance weights in the intermediate model
to increase the precision of pruning weights in the final model.
Specifically, the pruning weight matrix in the final pruned GNN is
a compound variable whose entries are calculated as follows:

𝑤̄𝑠
𝑖, 𝑗 = 𝑤𝑠

𝑖, 𝑗 + 𝛽1 ·𝑤𝑡
𝑖, 𝑗 + 𝛽2 · 𝜎 (ē𝑡⊤𝑖 ē𝑡𝑗) for (𝑢𝑖 , 𝑣 𝑗) ∈ E (8)

where 𝑤̄𝑠
𝑖, 𝑗

∈ R denotes the weight to decide if edge (𝑢𝑖 , 𝑣 𝑗) should
be pruned, and it is acquired using the independent edge weight

𝑤𝑠
𝑖, 𝑗

∈ W𝑠 of the final student model, the tuned edge weight
𝑤𝑡
𝑖, 𝑗

∈ W𝑡 of the intermediate GNN as the teacher model, and the
edge prediction made by the intermediate GNN’s final embeddings
ē𝑡
𝑖
, ē𝑡

𝑗
∈ R𝑑 . Here 𝛽1, 𝛽2 denote two hyperparameters for weighting

and we define the sparse decision matrix W̄𝑠
= {𝑤̄𝑠

𝑖, 𝑗
}𝐼× 𝐽 .

With this importance distillation in the edge pruning, the prun-
ing weights W̄𝑠 in the final student model are not only trained in
the end-to-end manner using the bilevel KD objectives, but also
directly adjusted by the well-trained weights in the intermediate
teacher model. Moreover, by utilizing the edge weights obtained in
the augmented graph, the pruned GNN is injected with the high-
order connectivity to facilitate edge dropping and global relation
learning. It is worth noting that, apart from the edge pruning, the
student’s edge weights are also employed in the graph informa-
tion propagation, to enrich the pruned GNN with less edges but
compensatory, adaptive and informative edge importance.

3.3 Optimization with Uniformity Constraint
Inspired by the advantage of learning uniform embeddings in
CF [22, 28], our LightGNN proposes to regularize the model op-
timization with an adaptive uniformity constraint based on con-
trastive learning. In specific, the constraint minimizes the pairwise
inner-product between embeddings to enforce representation uni-
formity, while maximizing the embedding similarity between nodes
with similar pruning masks. In this way, the positive relations are
augmented by the learned pruning weights for enhancement. For-
mally, the adaptive uniformity constraint is as follows:

L𝑢−𝑟𝑒𝑔 =
∑︁

𝑢𝑖 ∈U

©­­«− log

∑
𝑢
𝑖1 ∈S𝑖

exp
(
ē𝑠
𝑖
⊤ē𝑠

𝑖1/𝜏
)

∑
𝑢
𝑖2 ∈U exp

(
ē𝑠
𝑖
⊤ē𝑠

𝑖2/𝜏
) ª®®¬

+
∑︁
𝑣𝑗 ∈V

©­­«− log

∑
𝑣
𝑗1 ∈S𝑗

exp
(
ē𝑠
𝑗
⊤ē𝑠

𝑗1/𝜏
)

∑
𝑣
𝑗2 ∈V exp

(
ē𝑠
𝑗
⊤ē𝑠

𝑗2/𝜏
) ª®®¬ (9)

where S𝑖 and S𝑗 denote the positive sets of user 𝑢𝑖 and item 𝑣 𝑗 ,
respectively, which are determined by picking the users/items that
share the highest similarity in embedding pruning. Take the user
side as an example, the neighborhood set S𝑖 is acquired by:

S𝑖 =
{
𝑢𝑖1

�� ∥e𝑖 ⊙ e𝑖1 ∥0 ≥ max
(∥e𝑖 ∥0, ∥e𝑖1 ∥0

) − 𝛿
}

(10)

where e𝑖 , e𝑖1 ∈ {0, 1}𝑑 denote binary pruning masks for the 0-th
embedding vectors e𝑠

𝑖
and e𝑠

𝑖1 , respectively. Operator ⊙ denotes
the element-wise multiplication, and ∥ ∗ ∥0 denotes the 𝑙0 norm of
vectors. 𝛿 represents the threshold hyperparameter for similarity
relaxation, which is selected according to the pruning ratio.

With the above contrastive loss using similarly-pruned embed-
dings as positive sets, LightGNN can learn uniformly-distributed
embeddings while capturing the node-wise similarity during the
pruning process. Combining it with the collaborative filtering loss
L𝑏𝑝𝑟 , the bilevel KD losses L𝑝−𝑘𝑑 and L𝑒−𝑘𝑑 , and a weight-decay
regularization term over parameters Θ, LightGNN applies the fol-
lowing multi-task training loss with hyperparameters 𝜆∗:

L = 𝜆0L𝑏𝑝𝑟 + 𝜆1L𝑝−𝑘𝑑 + 𝜆2L𝑒−𝑘𝑑 + 𝜆3L𝑢−𝑟𝑒𝑔 + 𝜆4∥Θ∥2
F . (11)

LightGNN: Simple Graph Neural Network for Recommendation WSDM ’25, March 10–14, 2025, Hannover, Germany

Table 1: Statistical details of experimental datasets.

Dataset # Users # Items # Interactions Interaction Density
Gowalla 25557 19747 294983 5.85 × 10−4

Yelp 42712 26822 182357 1.59 × 10−4

Amazon 76469 83761 966680 1.51 × 10−4

4 Evaluation
We conduct extensive experiments on our LightGNN framework,
aiming to answer the following research questions (RQs):
• RQ1: How is the performance of LightGNN after the model
pruning, compared to existing recommendation methods?

• RQ2: How efficient is our pruned GNN, compared to baselines?
• RQ3: How do the components of the proposed LightGNN impact
the recommendation performance of the pruned GNN?

• RQ4: How do the pruning ratios impact the recommendation
performance and the efficiency of the pruned GNN?

• RQ5: Can the proposed LightGNN framework alleviate the over-
smoothing effect with its hierarchical knowledge distillation?

• RQ6: Can our LightGNN effectively identify the redundant and
noisy information in the user-item interaction graph?

4.1 Experimental Settings
4.1.1 Datasets. LightGNN is evaluated using three real-world
datasets: Gowalla, Yelp, and Amazon. The Gowalla dataset con-
tains user check-in records at geographical locations from January
to June 2010, obtained from the Gowalla platform.Yelp dataset is ob-
tained from Yelp platform and contains user ratings on venues from
January to June 2018. The Amazon dataset contains people’s rat-
ings of books on the Amazon platform, during 2013. Following [29],
we filter out users and items with less than three interactions, and
splitting the original datasets into training, validation, and test sets
by 70:5:25. Additionally, we convert ratings into binary implicit
feedback, following [8]. The data statistics are listed in Table 1.

4.1.2 Evaluation Protocols. We follow common evaluation pro-
tocols for recommendation [25, 35]. We rank all uninteracted items
with the positive items from test set for each user, a method known
as full-rank evaluation. We use two common metrics, Recall@N
and NDCG@N [24, 27] with values of 𝑁 = 20 and 40.

4.1.3 Baselines. We compare LightGNN to 18 baselines from di-
verse categories, including factorization method (BiasMF [13]),
deep neural CF methods (NCF [9], AutoR [19]), graph-based meth-
ods (GCMC [1], PinSage [33], STGCN [36],NGCF [25],GCCF [4],
LightGCN [8],DGCF [26]), self-supervised recommenders (SLRec [32],
SGL [27], NCL [15], SimGCL [34], HCCF [30]), and compressed
CF approaches (GLT [5], UnKD [3], SimRec [29]).

4.1.4 Hyperparameter Settings. We implement LightGNN with
PyTorch, using Adam optimizer and Xavier initializer with default
parameters. For all models, the training batch size is set to 4096 and
the embedding size is 32 by default. For all GNN-based models, we
set the layer number to 2. Weights 𝜆0, 𝜆1, 𝜆2 in LightGNNare tuned
from {1𝑒−𝑘 |𝑘 = 0, 1, ..., 4}. And 𝜆3 is tuned in a wider range which
additionally contains {1𝑒−5, 1𝑒−6}. The weight 𝜆4 for weight-decay
regularization is selected from {1𝑒−𝑘 |𝑘 = 3, 4, ..., 9}. All tempera-
ture coefficients are chosen from {1𝑒−𝑘 , 3𝑒−𝑘 , 5𝑒−𝑘 |𝑘 = −1, 0, 1, 2}.

Baseline methods are implemented using their released code with
grid search for hyperparameter tuning. The efficiency test is con-
ducted on a device with an NVIDIA GeForce RTX 3090 GPU.

4.2 Performance Comparison (RQ1)
We first compare LightGNN to baselines on recommendation accu-
racy. The results are in Table 2. Wemake the following observations:
• Superior performance of LightGNN: The proposed model
LightGNN surpasses all baselines across different categories,
including simple neural CF, graph-based recommenders, self-
supervised methods, and compression methods. This superiority
in performance demonstrates that our learnable pruning frame-
work and hierarchical distillation paradigm not only maintain
prediction accuracy after model compression but also enhance
existing recommendation frameworks. The effective elimination
of noise and redundancy in the interaction graph and embedding
parameters contributes to these performance improvements.

• Drawbacks of CF without model compression: When com-
paring the best-performing CF methods, such as self-supervised
CF techniques like SGL, HCCF, and SimGCL, to compression
methods like UnKD and SimRec, it is evident that CF methods
without model compression fall short in terms of recommenda-
tion accuracy. This discrepancy can be attributed to the debiasing
and anti-over-smoothing effects embedded in the knowledge dis-
tillation process of UnKD and SimRec. This suggests that model
compression techniques, such as knowledge distillation, can go
beyond improving model efficiency. They can also address ad-
verse factors present in observed data and modeling frameworks,
such as data bias, noise, and over-smoothing effects.

• Importance of explicit noise elimination: While UnKD and
SimRec refine the distilled model by addressing bias and over-
smoothing effects in GNN-based CF, they rely solely on high-level
supervision methods. In contrast, our LightGNN explicitly iden-
tifies and eliminates fine-grained noisy and redundant elements
within the model, such as edges and embedding entries. This
empowers our LightGNN with notable strength in recommender
refinement, leading to significant performance superiority.

4.3 Efficiency Test (RQ2)
To assess the model efficiency, we evaluate the memory and com-
putational costs of LightGNN and baselines. The compared base-
lines include NGCF, GCCF, HCCF, and existing GNN compression
method UnKD. Our LightGNN is tested with different preserva-
tion ratios. In Figure 3, the results are presented relative to the
performance of NGCF. We deduce the following observations:
• Simplified GNNs. Despite simplifying the GNN architecture by
removing transformations and activations, some GNN methods
like GCCF fail to significantly reduce memory and time costs
related to graph storage and information propagation. Conse-
quently, the costs of GCCF remain comparable to those of NGCF.
This demonstrates the limitation of architectural simplifications
in improving efficiency for graph-based recommendation.

• SSL-enhanced GNNs. SSL techniques have been utilized to
enhance graph recommenders by generating self-supervision
signals. However, it is important to note that these methods may

WSDM ’25, March 10–14, 2025, Hannover, Germany Guoxuan Chen, Lianghao Xia, and Chao Huang

Table 2: Overall performance comparison on Gowalla, Yelp, and Amazon datasets in terms of Recall@N and NDCG@N
Data Metric BiasMF NCF AutoR PinSage STGCN GCMC NGCF GCCF LightGCN DGCF SLRec NCL SGL HCCF SimGCL GLT UnKD SimRec Ours

Amazon
Recall@20 0.0324 0.0367 0.0525 0.0486 0.0583 0.0837 0.0551 0.0772 0.0868 0.0617 0.0742 0.0955 0.0874 0.0885 0.0921 0.0901 0.0947 0.1067 0.1189
NDCG@20 0.0211 0.0234 0.0318 0.0317 0.0377 0.0579 0.0353 0.0501 0.0571 0.0372 0.0480 0.0623 0.5690 0.0578 0.0605 0.0585 0.0607 0.0734 0.0820
Recall@40 0.0578 0.0600 0.0826 0.0773 0.0908 0.1196 0.0876 0.1175 0.1285 0.0912 0.1123 0.1409 0.1312 0.1335 0.1367 0.1355 0.1376 0.1535 0.1677
NDCG@40 0.0293 0.0306 0.0415 0.0402 0.0478 0.0692 0.0454 0.0625 0.0697 0.0468 0.0598 0.0764 0.0704 0.0716 0.0730 0.0725 0.0745 0.0879 0.0969

Gowalla
Recall@20 0.0867 0.1019 0.1477 0.0985 0.1574 0.1863 0.1757 0.2012 0.2230 0.2055 0.2001 0.2283 0.2332 0.2293 0.2328 0.2324 0.2331 0.2434 0.2610
NDCG@20 0.0579 0.0674 0.0690 0.0809 0.1042 0.1151 0.1135 0.1282 0.1433 0.1312 0.1298 0.1478 0.1509 0.1482 0.1506 0.1464 0.1496 0.1592 0.1684
Recall@40 0.1269 0.1563 0.2511 0.1882 0.2318 0.2627 0.2586 0.2903 0.3181 0.2929 0.2863 0.3232 0.3251 0.3258 0.3276 0.3269 0.3301 0.3399 0.3597
NDCG@40 0.0695 0.0833 0.0985 0.0994 0.1252 0.1390 0.1367 0.1532 0.1670 0.1555 0.1540 0.1745 0.1780 0.1751 0.1772 0.1730 0.1766 0.1865 0.1962

Yelp
Recall@20 0.0198 0.0304 0.0491 0.0510 0.0562 0.0584 0.0681 0.0742 0.0761 0.0700 0.0665 0.0806 0.0803 0.0789 0.0788 0.0812 0.0819 0.0823 0.0879
NDCG@20 0.0094 0.0143 0.0222 0.0245 0.0282 0.0280 0.0336 0.0365 0.0373 0.0347 0.0327 0.0402 0.0398 0.0391 0.0395 0.0400 0.0392 0.0414 0.0443
Recall@40 0.0307 0.0487 0.0692 0.0743 0.0856 0.0891 0.1019 0.1151 0.1175 0.1072 0.1032 0.1230 0.1226 0.1210 0.1213 0.1249 0.1202 0.1251 0.1328
NDCG@40 0.0120 0.0187 0.0268 0.0315 0.0355 0.0360 0.0419 0.0466 0.0474 0.0437 0.0418 0.0505 0.0502 0.0492 0.0498 0.0507 0.0493 0.0519 0.0553

HCCFNGCFGCCFUnKD.33,.44
.26,.37

.13,.23
.08,.16

0.0

0.2

0.4

0.6

0.8

1.0 Parameters
Storage Size

(a) Storage costs.

HCCFNGCFGCCFUnKD.33,.44
.26,.37

.13,.23
.08,.16

0.0

0.2

0.4

0.6

0.8

1.0

1.2 x4 Time
FLOPs

(b) Time costs.

Figure 3: Disk storage and time costs of baselines and our
LightGNN under different preservation ratios (e.g. .33, .44
denote preserving 33% embedding entries and 44% edges).

introduce additional operations, leading to increased memory
and time costs. This is exemplified by the performance of HCCF,
where utilizing extra hypergraph propagation necessitates more
FLOPs and yields a noticeable increase in computational time.

• Existing compressed GNNs. UnKD has been successful in
achieving efficiency improvements, particularly in terms of com-
putational time. However, when comparing UnKD to LightGNN,
a significant disadvantage becomes evident. This limitation arises
from UnKD’s lack of explicit identification and removal of re-
dundancy and noise in the GNN model. As a result, UnKD is
unable to prune a larger portion of the GNN to achieve superior
efficiency improvements like our LightGNN framework does.

• Efficiency of LightGNN. The results demonstrate a significant
memory reduction of 70% in LightGNN, considering both the
parameter number and storage size. Moreover, there is an impres-
sive reduction of over 90% in FLOPs during forward propagation
and an over 50% reduction in physical prediction time. These
efficiency optimizations can be attributed to two key aspects.
Firstly, the learnable GNN pruning paradigm accurately removes
redundant and noisy information from the GNN. This facilitates
efficient utilization of computational resources. Secondly, our
learnable pruning mechanism is supervised by the hierarchical
KD, which incorporates multi-dimensional alignment and high-
order structure augmentation. This maximizes the retention of
performance, allowing for more extensive pruning of parameters.

4.4 Ablation Study (RQ3)
We investigate the effectiveness of LightGNN’s technical designs
using Gowalla and Yelp data, with different pruning ratios. The
results are shown in Table 3. We make the following observations.

Table 3: Ablation study of LightGNNmeasured by Recall@20.

Dataset Gowalla Yelp
Ratio E/E .33/.44 .26/.37 .11/.19 .08/.16 .33/.77 .26/.74 .11/.60 .08/.57

Prn

~EmbP 0.2197 0.1946 0.0741 0.0586 0.0809 0.0737 0.0434 0.0357
~EdgeP 0.2418 0.2255 0.1341 0.1133 0.0867 0.0850 0.0745 0.0709
~BothP 0.1800 0.1434 0.0556 0.0421 0.0736 0.0661 0.0311 0.0231
BnEdge 0.2210 0.2021 0.1280 0.1165 0.0872 0.0858 0.0775 0.0754

KD
-BiAln 0.2350 0.2281 0.1934 0.1812 0.0810 0.0801 0.0666 0.0650
-IntKD 0.2607 0.2571 0.2100 0.1890 0.0822 0.0825 0.0788 0.0769
-ImpD 0.2593 0.2564 0.2135 0.1923 0.0862 0.0861 0.0808 0.0797

LightGNN 0.2610 0.2578 0.2162 0.1966 0.0879 0.0877 0.0856 0.0842

Effectiveness of the GNN pruning techniques.
• ~EmbP, ~EdgeP, ~BothP: We replace the learnable pruning with
random dropping. The three variants replace embedding pruning,
edge pruning, and both, respectively. Significant performance
drop can be observed under different pruning ratios, indicating
the effectiveness of our learnable pruning in identifying the es-
sential embedding entries and edges. Especially, when dropping
with high ratios (e.g. preserving only 11% and 8% entries), the pre-
diction ability of the random variants experiences a destructive
(over 70%) decay, while LightGNN preserves most of its accuracy.

• BnEdge: To study the effect of learned edge weightsW𝑠 , BnEdge
uses binary edge weights instead ofW𝑠 during GNN propagation.
Though it maintains the learnable pruning process unchanged, a
noticeable degradation can be observed. This suggests the crucial
role of learned weights. They not only identify which edges to
prune, but also effectively preserve the pruned information.

Effectiveness of knowledge distillation.
• -BiAln: To assess the significance of the KD constraints for ef-
fective pruning, we remove the bilevel alignment, including the
prediction-level and embedding-level KD. The notable perfor-
mance drop verifies the importance of aligning the teacher model
with the pruned model, to effectively retain model performance.

• -IntKD: This variant removes the intermediate KD layer in Light-
GNN. As a result, its performance notably deteriorates, particu-
larly on the Yelp dataset. The increased importance of this module
for Yelp can be attributed to the higher sparsity of the dataset. In
such cases, the intermediate KD layer is able to seek more edges
from high-order relations to enrich the small edge set.

• -ImpD: This variant removes the importance distillation, and
the results confirm the benefits of incorporating learned edge
weights and predictions from the intermediate KD layer model
into the decision-making process of edge dropping.

LightGNN: Simple Graph Neural Network for Recommendation WSDM ’25, March 10–14, 2025, Hannover, Germany

(a) Gowalla dataset. (b) Amazon dataset.

(a) Gowalla (b) Amazon
Figure 4: Hyperparameter Study

Preservation Ratio %
(Embeddings, Edges) 0 1 2 3 4 5 6 7 8 9 10 11

Mildly Prune 100,100 80,95 64,90 51,86 41,81 33,77 26,74 20,70 17,66 13,63 10,60 8,57
Aggressively Prune 100,100 80,85 64,72 51,61 41,52 33,44 26,37 21,32 17,27 13,23 11,19 8,16

Table 4: Preservation Ratios of Embeddings and Edges

(a) LightGCN (b) SGL (c) SimGCL (d) Ours

Figure 5: Embedding distributions in the 2-D space and in
the 1-D angle space for Yelp dataset, estimated by KDE.

of information on the Amazon dataset compared to the Gowalla
dataset. This observation suggests the presence of more redun-
dancy or noise in the Amazon data, which aligns with the larger
number of edges and users/items present in the Amazon dataset.

4.6 Anti-Over-Smoothing E�ect Study (RQ5)
To assess the ability of PruneGNN to mitigate the over-smoothing
e�ect of GNNs during the pruning process, we compare the distri-
bution uniformity of our model’s embeddings with those of baseline
methods. This comparison is conducted in two dimensions as below.
• Visualization of Embedding Distribution. We begin by visu-
alizing the embedding distribution of our PruneGNN alongside
three best-performed CF baselines, namely LightGCN, SGL, and
SimGCL. For this visualization, we randomly select 2000 item
nodes as samples. These node embeddings are then projected
onto a 2-D space using t-SNE and normalized using their ;2 norms.
Next, we estimate the distribution of these sampled embeddings
using density estimation based on Gaussian kernels (KDE). In
Figure 5, we present the results as heat maps in the 2-D space,
where darker color indicates higher probability. Additionally, we
display the estimated probability density w.r.t angles.
Observations: i) The clustering e�ect observed in both plots is
notably stronger for LightGCN, demonstrating the severe over-
smoothing e�ect resulting from the iterative embedding smooth-
ing paradigm. ii) To address this issue, SGL and SimGCL incorpo-
rate contrastive learning to enhance the distribution uniformity

Table 5: MAD among popular nodes from Yelp and Gowalla.
Datasets GCCF LightGCN NCL SGL SimGCL SimRec Ours
Yelp 0.8747 0.8819 0.8929 0.8643 0.9103 0.9272 0.9404

Gowalla 0.8206 0.8269 0.8236 0.7760 0.8595 0.8406 0.8742

of embeddings. Both methods exhibit higher uniformity in the
estimated distribution compared to LightGCN, with SimGCL
exhibiting some superiority due to its less-random augmenta-
tion design. iii) Compared to SimGCL, our PruneGNN exhibits
even fewer dark regions in the embedding ring, indicating higher
uniformity. This advantage becomes more apparent in the angle-
based plot, where the low probabilities are much closer to the
high ones in PruneGNN. This observation strongly indicates a
higher anti-over-smoothing ability of our PruneGNN, which can
be ascribed to our uniformity constraint enhanced by incorporat-
ing node-wise similarity learned by the embedding pruning.xxx

• Mean Average Distance (MAD) Values. To perform a more
quantitative analysis of the this issue, we further measure the
MAD values [2] for our PruneGNN and six baselines on the
Yelp and Gowalla datasets. Higher MAD values indicate stronger
smoothing e�ect among the test nodes. Following [27], we eval-
uate the MAD metric on a sampled node set consisting of 1000
popular users and 1000 popular items. This choice of test node
set is particularly e�ective in detecting the over-smoothing e�ect
with MAD. The evaluation results are presented in Table 5.
Observations: i) The GNN-based CF paradigms GCCF and Light-
GCN generally exhibit lower MAD values compared to other
methods that employ contrastive learning. This observation high-
lights the inherent over-smoothing issue in propagation-based
graph neural encoders. ii) For the other baselines, we observe
that NCL and SGL show lower MAD values, indicating a stronger
over-smoothing e�ect. This sheds light on the limitations of their
random structure augmentation methods, which are susceptible
to the in�uence of data noise. iii) The superiority of SimGCL and
SimRec validates their e�ective design of pushing all embeddings
apart. In comparison, our PruneGNN achieves further advance-
ments by constructing meaningful positive sample pairs using
node-wise similarity in embedding pruning. This technique e�ec-
tively enhances positive relation learning in a learnable manner.

4.7 Noise and Redundancy Identi�cation (RQ6)
In this experiment, we investigate our PruneGNN’s ability in prun-
ing noise and redundancy in the observed interaction data. Figure 6
shows concrete examples on dealing with these issues.
Noise Pruning. Figure 6(a) illustrates two sets of learned weights
in W for edges on the left side, along with users’ text reviews and
ratings for the corresponding items on the right side. It is important
to note that the text reviews and ratings were not exposed to our
PruneGNN model. In the presented cases, our PruneGNN assigned
low weights to the interactions between D310 and E1704, as well as
between D4470 and E4641. Interestingly, these edges align with users’
negative feedback, such as low ratings and comments like "too salty."
In the context of graph CF, these negative feedback instances are
considered as regular user-item interactions, potentially impacting
the modeling of user preferences in an adverse manner. Similar

(c) Embedding and edge preservation ratios of di�erent degrees.

Figure 4: Computational FLOPs (bars) and recommendation
performance (lines) w.r.t di�erent preservation ratios.

• -ImpD: It removes the importance distillation, and the results
con�rm the bene�ts of directly incorporating learned weights
from the intermediate KD layer into the �nal pruned model.

4.5 In�uence of Pruning Ratios (RQ4)
In this experiment, we investigate the impact of pruning ratios
for edges and embedding entries on both model performance and
e�ciency. Figure 4 showcases the evaluated model performance
and computing FLOPs (�oating point operations) across various
preservation ratios. We present two pruning schedules: a mild prun-
ing schedule that removes fewer graph edges in the GNN, and an
aggressive pruning schedule that removes more edges. Based on
the results, we draw the following observations:
• Performance change. As we discard a larger number of embed-
ding entries and graph edges, we observe a continuous decline
in performance. However, it is noteworthy that even when a sub-
stantial portion of the GNN model is removed, our PruneGNN
consistently maintains a high level of recommendation perfor-
mance compared to SimGCL and LightGCN. This resilience can
be attributed to the hierarchical KD module, which e�ectively
aligns the predictions of the student model with those of the
well-performing teacher model through bilevel alignment and
importance distillation. Additionally, the intermediate KD layer
with structure augmentation further enhances the recommenda-
tion ability by incorporatingmore edges sampled from high-order
relations. These features collectively contribute to the robust per-
formance and recommendation capabilities of our PruneGNN.

• E�ciency change. As the prune ratios increases, our PruneGNN
exhibits a signi�cant decrease in FLOPs. This con�rms the e�ec-
tiveness of enhancing GNN e�ciency through the pruning of
embeddings and structures. Speci�cally, our PruneGNN achieves
an FLOPs reduction of xx% while maintaining comparable per-
formance to SimGCL, and an FLOPs reduction of xx% while
performing similarly to LightGCN. These substantial reductions
in FLOPs highlight the e�ectiveness of our learnable pruning
strategy in minimizing computational operations.

• Di�erences across datasets. Furthermore, it is worth men-
tioning that our PruneGNN demonstrates better preservation of

Preserv. Ratio %
(Embed., Edge) 0 1 2 3 4 5 6 7 8 9 10 11

Mild Prune 100,100 80,95 64,90 51,86 41,81 33,77 26,74 20,70 17,66 13,63 10,60 8,57
Aggressive Prune 100,100 80,85 64,72 51,61 41,52 33,44 26,37 21,32 17,27 13,23 11,19 8,16

Table 4: Preservation Ratios of Embeddings and Edges

(a) LightGCN (b) SGL (c) SimGCL (d) Ours

Figure 5: Embedding distributions in the 2-D space and in
the 1-D angle space for Yelp dataset, estimated by KDE.

Table 5: MAD among popular nodes from Yelp and Gowalla.
Datasets GCCF LightGCN NCL SGL SimGCL SimRec Ours
Yelp 0.8747 0.8819 0.8929 0.8643 0.9103 0.9272 0.9404

Gowalla 0.8206 0.8269 0.8236 0.7760 0.8595 0.8406 0.8742

recommendation performance when pruning the same portion
of information on the Amazon dataset compared to the Gowalla
dataset. This observation suggests the presence of more redun-
dancy or noise in the Amazon data, which aligns with the larger
number of edges and users/items present in the Amazon dataset.

4.6 Anti-Over-Smoothing E�ect Study (RQ5)
To assess the ability of PruneGNN to mitigate the over-smoothing
e�ect of GNNs during the pruning process, we compare the distribu-
tion uniformity of our model’s embeddings with those of baseline
methods. This comparison is conducted in two dimensions. We
elaborate the experimental settings in Appendix A.7.
• Visualization of Embedding Distribution. From the embed-
ding distributions plotted in Figure 5, we can observe that: i) The
clustering e�ect observed in both 2-D plots and angle plots is
notably stronger for LightGCN, demonstrating the severe over-
smoothing e�ect resulting from the iterative embedding smooth-
ing paradigm. ii) To address this issue, SGL and SimGCL incorpo-
rate contrastive learning to enhance the distribution uniformity
of embeddings. Both methods exhibit higher uniformity in the
estimated distribution compared to LightGCN, with SimGCL
exhibiting some superiority due to its less-random augmenta-
tion design. iii) Compared to SimGCL, our PruneGNN exhibits
even fewer dark regions in the embedding ring, indicating higher
uniformity. This advantage becomes more apparent in the angle-
based plot, where the low probabilities are much closer to the
high ones in PruneGNN. This observation strongly indicates a
higher anti-over-smoothing ability of our PruneGNN, which can
be ascribed to the sparsi�cation e�ect caused by embedding prun-
ing, and the uniformity constraint in our PruneGNN.

Figure 4: Computational FLOPs (bars) and recommendation
performance (lines) w.r.t different preservation ratios.

• -ImpD: It removes the importance distillation, and the results
confirm the benefits of directly incorporating learned weights
from the intermediate KD layer into the final pruned model.

4.5 Influence of Pruning Ratios (RQ4)
In this experiment, we investigate the impact of pruning ratios
for edges and embedding entries on both model performance and
efficiency. Figure 4 showcases the evaluated model performance
and computing FLOPs (floating point operations) across various
preservation ratios. We present two pruning schedules: a mild prun-
ing schedule that removes fewer graph edges in the GNN, and an
aggressive pruning schedule that removes more edges. Based on
the results, we draw the following observations:

• Performance change. As we discard a larger number of embed-
ding entries and graph edges, we observe a continuous decline
in performance. However, it is noteworthy that even when a sub-
stantial portion of the GNN model is removed, our PruneGNN
consistently maintains a high level of recommendation perfor-
mance compared to SimGCL and LightGCN. This resilience can
be attributed to the hierarchical KD module, which effectively
aligns the predictions of the student model with those of the
well-performing teacher model through bilevel alignment and
importance distillation. Additionally, the intermediate KD layer
with structure augmentation further enhances the recommenda-
tion ability by incorporatingmore edges sampled from high-order
relations. These features collectively contribute to the robust per-
formance and recommendation capabilities of our PruneGNN.

• Efficiency change. As the pruning ratios increases, PruneGNN
exhibits a significant decrease in FLOPs. This confirms the effec-
tiveness of enhancing GNN efficiency by pruning embeddings
and structures. Specifically, our PruneGNN achieves an FLOPs
reduction of 90% during forward propagation while maintaining
comparable performance to SimGCL, and an FLOPs reduction of
95% while performing similarly to LightGCN. These substantial
reductions in FLOPs highlight the effectiveness of our learnable
pruning strategy in minimizing computational operations.

• Differences across datasets. Furthermore, it is worth men-
tioning that our PruneGNN demonstrates better preservation of
recommendation performance when pruning the same portion
of information on the Amazon dataset compared to the Gowalla

Preserv. Ratio %
(Embed., Edge) 0 1 2 3 4 5 6 7 8 9 10 11

Mild Prune 100,100 80,95 64,90 51,86 41,81 33,77 26,74 21,70 17,66 13,63 11,60 8,57
Aggressive Prune 100,100 80,85 64,72 51,61 41,52 33,44 26,37 21,32 17,27 13,23 11,19 8,16

Table 4: Preservation Ratios of Embeddings and Edges

1.0 0.5 0.0 0.5 1.0Embeddings

1.0

0.5

0.0

0.5

1.0

2 0 2Angles
0.0

0.2

De
ns

ity

(a) LightGCN

1.0 0.5 0.0 0.5 1.0Embeddings

1.0

0.5

0.0

0.5

1.0

2 0 2Angles
0.0

0.2

0.4

De
ns

ity

(b) SGL

1.0 0.5 0.0 0.5 1.0Embeddings

1.0

0.5

0.0

0.5

1.0

2 0 2Angles
0.0

0.2

De
ns

ity

(c) SimGCL

1.0 0.5 0.0 0.5 1.0Embeddings

1.0

0.5

0.0

0.5

1.0

2 0 2Angles
0.0

0.1

0.2

De
ns

ity

(d) Ours

Figure 5: Embedding distributions in the 2-D space and in
the 1-D angle space for Yelp dataset, estimated by KDE.

Table 5: MAD among popular nodes from Yelp and Gowalla.
Datasets GCCF LightGCN NCL SGL SimGCL SimRec Ours
Yelp 0.8747 0.8819 0.8929 0.8643 0.9103 0.9272 0.9404

Gowalla 0.8206 0.8269 0.8236 0.7760 0.8595 0.8406 0.8742

dataset. This observation suggests the presence of more redun-
dancy or noise in the Amazon data, which aligns with the larger
number of edges and users/items present in the Amazon dataset.

4.6 Anti-Over-Smoothing Effect Study (RQ5)
To assess the ability of PruneGNN to mitigate the over-smoothing
effect of GNNs during the pruning process, we compare the distribu-
tion uniformity of our model’s embeddings with those of baseline
methods. This comparison is conducted in two dimensions. We
elaborate the experimental settings in Appendix A.7.
• Visualization of Embedding Distribution. From the embed-
ding distributions plotted in Figure 5, we can observe that: i) The
clustering effect observed in both 2-D plots and angle plots is
notably stronger for LightGCN, demonstrating the severe over-
smoothing effect resulting from the iterative embedding smooth-
ing paradigm. ii) To address this issue, SGL and SimGCL incorpo-
rate contrastive learning to enhance the distribution uniformity
of embeddings. Both methods exhibit higher uniformity in the
estimated distribution compared to LightGCN, with SimGCL
exhibiting some superiority due to its less-random augmenta-
tion design. iii) Compared to SimGCL, our PruneGNN exhibits
even fewer dark regions in the embedding ring, indicating higher
uniformity. This advantage becomes more apparent in the angle-
based plot, where the low probabilities are much closer to the
high ones in PruneGNN. This observation strongly indicates a
higher anti-over-smoothing ability of our PruneGNN, which can
be ascribed to the sparsification effect caused by embedding prun-
ing, and the uniformity constraint in our PruneGNN.

• Mean Average Distance (MAD) Values. We further evaluate
the MAD values [4, 33] in Table 5, from which we draw the fol-
lowing observations: i) The GNN-based CF paradigms GCCF and
LightGCN generally exhibit lowerMAD values compared to other

Figure 4: Computational FLOPs (bars) and recommendation
performance (lines) w.r.t different preservation ratios.

4.5 Influence of Pruning Ratios (RQ4)
In this experiment, we investigate the impact of pruning ratios
for edges and embedding entries on both model performance and
efficiency. Figure 4 shows the evaluated model performance and
computing FLOPs (floating point operations) during forward prop-
agation across various preservation ratios. We present two pruning
schemes: a mild pruning scheme that removes fewer graph edges
in the GNN, and an aggressive pruning scheme that removes more
edges. Based on the results, we draw the following observations:

• Performance change. As we discard a larger number of embed-
ding entries and graph edges, we observe a continuous decline
in performance. However, it is noteworthy that even when a sub-
stantial portion of the GNNmodel is removed, our LightGNN con-
sistently maintains a high level of recommendation performance
compared to SimGCL and LightGCN. This resilience can be at-
tributed to the hierarchical KD, which effectively aligns the pre-
dictions of the student model with those of the well-performing
teacher model through bilevel alignment, and the importance dis-
tillation that gives the optimal dropping strategies. Additionally,
the intermediate KD layer with structure augmentation further
enhances the recommendation ability by incorporating more
edges sampled from high-order relations. These features collec-
tively contribute to the robust performance of LightGNN.

• Efficiency change. As the pruning ratio increases, LightGNN
exhibits a significant decrease in FLOPs. This confirms the effec-
tiveness of enhancing GNN efficiency by pruning embeddings
and structures. Specifically, our LightGNN achieves a FLOPs re-
duction of 90% during forward propagation while maintaining
comparable performance to SimGCL, and a FLOPs reduction of
95% while performing similarly to LightGCN. These substantial
reductions in FLOPs highlight the effectiveness of our learnable
pruning strategy in minimizing computational operations.

• Differences across datasets. Furthermore, it is worth mention-
ing that our LightGNN demonstrates better preservation of rec-
ommendation performance when pruning the same proportion
of information on the Amazon dataset compared to the Gowalla
dataset. This observation suggests the presence of more redun-
dancy or noise in the Amazon data, which aligns with the larger
number of edges and users/items present in the Amazon dataset.

1.0 0.5 0.0 0.5 1.0Embeddings

1.0

0.5

0.0

0.5

1.0

2 0 2Angles
0.0

0.2

De
ns

ity

(a) LightGCN

1.0 0.5 0.0 0.5 1.0Embeddings

1.0

0.5

0.0

0.5

1.0

2 0 2Angles
0.0

0.2

0.4

De
ns

ity

(b) SGL

1.0 0.5 0.0 0.5 1.0Embeddings

1.0

0.5

0.0

0.5

1.0

2 0 2Angles
0.0

0.2

De
ns

ity

(c) SimGCL

1.0 0.5 0.0 0.5 1.0Embeddings

1.0

0.5

0.0

0.5

1.0

2 0 2Angles
0.0

0.1

0.2

De
ns

ity

(d) Ours

Figure 5: Embedding distributions in the 2-D space and in
the 1-D angle space for Yelp dataset, estimated by KDE.

Table 4: MAD among popular nodes from Yelp and Gowalla.
Datasets GCCF LightGCN NCL SGL SimGCL SimRec Ours
Yelp 0.8747 0.8819 0.8929 0.8643 0.9103 0.9272 0.9404

Gowalla 0.8206 0.8269 0.8236 0.7760 0.8595 0.8406 0.8742

4.6 Anti-Over-Smoothing Effect Study (RQ5)
To assess the ability of LightGNN to mitigate the over-smoothing
effect of GNNs during the pruning process, we compare the distri-
bution uniformity of our model’s embeddings with those of baseline
methods. This comparison is conducted in two dimensions.
• Visualization of Embedding Distribution. From the embed-
ding distributions plotted in Figure 5, we can observe that: i) The
clustering effect observed in both 2-D plots and angle plots is
notably stronger for LightGCN, demonstrating the severe over-
smoothing effect resulting from the iterative embedding smooth-
ing paradigm. ii) To address this issue, SGL and SimGCL incorpo-
rate contrastive learning to enhance the distribution uniformity
of embeddings. Both methods exhibit higher uniformity in the
estimated distribution compared to LightGCN, with SimGCL ex-
hibiting some superiority due to its less-random augmentation
design. iii) Compared to SimGCL, our LightGNN exhibits even
fewer dark regions in the embedding distribution ring, indicating
higher uniformity. This advantage becomes more apparent in the
angle-based plot, where the low probabilities are much closer to
the high ones in LightGNN. This observation strongly indicates
a higher anti-over-smoothing ability of our LightGNN, which
can be ascribed to the sparsification effect caused by embedding
pruning, and the uniformity constraint in our LightGNN.

• Mean Average Distance (MAD) Values. We further evaluate
the MAD values [2, 29] in Table 4, from which we draw the fol-
lowing observations: i) The GNN-based CF paradigms GCCF and
LightGCN generally exhibit lowerMAD values compared to other
methods that employ contrastive learning. This observation high-
lights the inherent over-smoothing issue in propagation-based
graph neural encoders. ii) For the other baselines, we observe
that NCL and SGL show lower MAD values, indicating a stronger
over-smoothing effect. This sheds light on the limitations of their
random structure augmentation methods, which are susceptible
to the influence of data noise. iii) The superiority of SimGCL and
SimRec validates their effective design of pushing all embeddings
apart. In comparison, our LightGNN achieves further advance-
ments by constructing meaningful positive sample pairs using
node-wise similarity in embedding pruning. This technique effec-
tively enhances positive relation learning in a learnable manner.

WSDM ’25, March 10–14, 2025, Hannover, Germany Guoxuan Chen, Lianghao Xia, and Chao Huang

U310

V1704

V2749

V2755

0.84

0.90

0.93

Review for <U310 , V1704>: Honestly, I know a lot of people who

loves this place. For me their soup base is just way too salty…she

even found it salty. It burned our tongues…

Review for <U310 , V2749>: One of the better Japanese places in

town. Came here a couple of times... Amazing and impeccable

service…

Review for <U310 , V2755>: My favorite favorite favorite Thai place.

Unlike most Thai places…

U4470

V4641

0.74

1.27

1.44

U14498

U14631

Review for <U4470 , V4641>: ...boyfriend suffered though...They

should have issued a warning on those hot peppers...they were too

spicy to eat. He picked them off the last slice, but by then, the

damage was done.

Review for <U14498 , V4641>: Warm, welcoming, and wonderful

staff...The food was amazing and very fairly priced...

Review for <U14631 , V4641>: Really good food... Best chicken

sandwich I ever had. We also had quality service.

(a)

(a)

V181

0.851.22

1.12

V182 V187

U23

Category: Chinese Restaurants

V52

0.80

1.13

1.12

V279 V293

U33

Category: American Bars

V2064

1.01

1.02

0.83

V2068 V2077

U216

Category: Bubble Tea

V2081

1.06
(b)

(b)

Figure 6: Investigation on the capability of (a) noise pruning
and (b) redundancy pruning for our LightGNN framework.

4.7 Noise and Redundancy Identification (RQ6)
We explore LightGNN’s capacity to trim noise and redundancy in
interaction data. The results are detailed in Figure 6.
Noise Pruning. In Figure 6(a), two sets of decision weights in
W̄𝑠 for left-side edges are depicted alongside users’ text reviews
and ratings for corresponding items on the right. Notably, these
reviews and ratings were not exposed to our LightGNN. Our re-
sults show that LightGNN assigns low weights to interactions like
< 𝑢310 , 𝑣1704 > and < 𝑢4470 , 𝑣4641 >, aligning with users’ negative
feedback (e.g., "too salty."). In the context of graph CF, such negative
feedback instances are viewed as regular user-item interactions,
possibly adversely affecting user preference modeling. Frequent
similar observations in our results show that LightGNN effectively
identifies and addresses noise in the graph structure, thereby im-
proving the pruning effect of GNN-based recommendation.
Redundancy Pruning. In Figure 6(b), some representative cases
demonstrate the efficacy of redundancy pruning in LightGNN,
where three users interact with multiple venues sharing the same
categories like Chinese restaurants and American bars, reflecting re-
dundant user interest information. Despite being category-agnostic,
LightGNN identifies these similarities, assigning lower weights
to some of the redundant items. This encourages the pruning al-
gorithm to eliminate the redundancy, thereby enhancing model
efficiency. Moreover, thanks to the learnable edge weights in the
intermediate KD layer, LightGNN preserves preference strength for
each interest, rather than relying on item counts of each interest.

5 Related Work
5.1 Graph Neural Recommender Systems
Graph neural networks (GNNs) have emerged as foundational
architectures for recommendation systems. Early works such as
NGCF [25] andGCMC [1] introduced graph convolutional networks
(GCNs) for collaborative recommendation. Subsequent studies in-
clude STGCN [36], which integrates an autoencoding architecture

within the GNN encoder, and DGCF [26], which incorporates a rep-
resentation disentanglement module into graph-based collaborative
filtering. LightGCN [8] and GCCF [4] emphasize the redundancy in
prior graph neural architectures and achieve improved performance
by eliminating both non-linear and linear mappings.

Recently, self-supervised learning (SSL) has gained attention
for its ability to generate rich supervision signals and address the
data sparsity problem in recommendation. Contrastive learning
(CL)-based graph CF (e.g. SGL [27], SimGCL [34], DirectAU [22],
AdaGCL [12]) is a popular SSL technique that effectively learns a
uniform distribution to counter the over-smoothing effect of GNNs.
HCCF [30] and NCL [15] introduce additional encoding views to
enrich graph CL. In addition, graph-based recommendation has also
been enhanced with generative SSL techniques based on masked
autoencoding, such as AutoCF [28] and DGMAE [17].

Despite the substantial enhancements in recommendation perfor-
mance due to GNN advancements, an inherent limitation remains
in the inefficiency of GNN’s extensive information propagation and
node-specific parameters. In this context, our LightGNN aims to
effectively prune redundant and noisy components of GNNs while
preserving high performance through distillation constraints.

5.2 Model Compression for Graph Models
To enhance the scalability of GNNs, prior works have utilized ran-
dom node and edge sampling techniques for large graphs (e.g.,
PinSAGE [33], HGT [11]). However, these random strategies do
not ensure the preservation of crucial information and may signifi-
cantly affect model performance. In response, several approaches
have emerged to better retain important patterns from the original
model. GLT [5] advocates for preserving only the essential edges by
learning their importance to downstream task performance. Other
studies improve compression supervision through knowledge dis-
tillation. GLNN [37] and SimRec [29] propose distilling efficient
student models based onMLP from heavier GNNs. UnKD [3] further
mitigates bias in the KD process using a stratified distillation strat-
egy. Additionally, KD has been applied to compress recommenders
based on non-GNN architectures (e.g., [21, 31]).

In contrast to previous approaches that broadly reduce model
complexity by substituting GNNs with simpler architectures, our
LightGNN preserves robust topology extraction capabilities of
GNNs. It achieves efficiency by explicitly identifying and eliminat-
ing redundancy and noise within GNN structures and embeddings.
This strategy effectively mitigates misinformation in the graph
while enhancing interpretability through pruned information.

6 Conclusion
This paper introduces a novel pruning framework, LightGNN, aimed
at addressing scalability and robustness challenges in GNN-based
collaborative filtering. LightGNN explicitly models the probabilities
of redundancy and noise for each edge and embedding parame-
ter within the GNN recommender, enabling precise pruning of
misinformation. It is driven by innovative hierarchical distillation
objectives that leverage high-order relations and multi-level distil-
lation to enhance performance retention. Extensive experiments
demonstrate that LightGNN outperforms baselines in recommen-
dation performance, compression efficiency, and robustness.

LightGNN: Simple Graph Neural Network for Recommendation WSDM ’25, March 10–14, 2025, Hannover, Germany

References
[1] R. v. d. Berg, T. N. Kipf, and M. Welling. Graph convolutional matrix completion.

arXiv preprint arXiv:1706.02263, 2017.
[2] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun. Measuring and relieving the

over-smoothing problem for graph neural networks from the topological view.
In AAAI Conference on Artificial Intelligence (AAAI), volume 34, pages 3438–3445,
2020.

[3] G. Chen, J. Chen, F. Feng, S. Zhou, and X. He. Unbiased knowledge distillation
for recommendation. In ACM International Conference on Web Search and Data
Mining (WSDM), pages 976–984, 2023.

[4] L. Chen, L. Wu, R. Hong, K. Zhang, and M. Wang. Revisiting graph based
collaborative filtering: A linear residual graph convolutional network approach.
In AAAI Conference on Artificial Intelligence (AAAI), volume 34, pages 27–34,
2020.

[5] T. Chen, Y. Sui, X. Chen, A. Zhang, and Z. Wang. A unified lottery ticket hypoth-
esis for graph neural networks. In International Conference on Machine Learning
(ICML), pages 1695–1706. PMLR, 2021.

[6] J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In International Conference on Learning Representations (ICLR),
2018.

[7] C. Gao, Y. Zheng, N. Li, Y. Li, Y. Qin, J. Piao, Y. Quan, J. Chang, D. Jin, X. He, et al. A
survey of graph neural networks for recommender systems: Challenges, methods,
and directions. ACM Transactions on Recommender Systems (TRS), 1(1):1–51, 2023.

[8] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M.Wang. Lightgcn: Simplifying and
powering graph convolution network for recommendation. In International ACM
SIGIR conference on research and development in Information Retrieval (SIGIR),
pages 639–648, 2020.

[9] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua. Neural collaborative
filtering. In The ACM Web Conference (WWW), pages 173–182, 2017.

[10] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[11] Z. Hu, Y. Dong, K. Wang, and Y. Sun. Heterogeneous graph transformer. In The
ACM Web Conference (WWW), pages 2704–2710, 2020.

[12] Y. Jiang, C. Huang, and L. Huang. Adaptive graph contrastive learning for
recommendation. In International Conference on Knowledge Discovery and Data
Mining (KDD), pages 4252–4261, 2023.

[13] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, 2009.

[14] Y. Koren, S. Rendle, and R. Bell. Advances in collaborative filtering. Recommender
systems handbook, pages 91–142, 2021.

[15] Z. Lin, C. Tian, Y. Hou, and W. X. Zhao. Improving graph collaborative filtering
with neighborhood-enriched contrastive learning. In The ACM Web Conference
(WWW), pages 2320–2329, 2022.

[16] A. v. d. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[17] Y. Ren, Z. Haonan, L. Fu, X. Wang, and C. Zhou. Distillation-enhanced graph
masked autoencoders for bundle recommendation. In International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR), pages
1660–1669, 2023.

[18] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr: Bayesian
personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618, 2012.

[19] S. Sedhain, A. K. Menon, S. Sanner, and L. Xie. Autorec: Autoencoders meet
collaborative filtering. In The ACM Web Conference (WWW), pages 111–112,
2015.

[20] X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering techniques.
Advances in Artificial Intelligence, 2009, 2009.

[21] J. Tang and K. Wang. Ranking distillation: Learning compact ranking models
with high performance for recommender system. In ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD), pages 2289–2298, 2018.

[22] C. Wang, Y. Yu, W. Ma, M. Zhang, C. Chen, Y. Liu, and S. Ma. Towards repre-
sentation alignment and uniformity in collaborative filtering. In ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD), pages 1816–1825,
2022.

[23] W. Wang, F. Feng, X. He, L. Nie, and T.-S. Chua. Denoising implicit feedback
for recommendation. In ACM International Conference on Web Wearch and Data
Mining (WSDM), pages 373–381, 2021.

[24] W. Wang, Y. Xu, F. Feng, X. Lin, X. He, and T.-S. Chua. Diffusion recommender
model. International ACM SIGIR conference on research and development in Infor-
mation Retrieval (SIGIR), 2023.

[25] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua. Neural graph collaborative
filtering. In International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), pages 165–174, 2019.

[26] X. Wang, H. Jin, A. Zhang, X. He, T. Xu, and T.-S. Chua. Disentangled graph
collaborative filtering. In International ACM SIGIR conference on research and
development in information retrieval (SIGIR), pages 1001–1010, 2020.

[27] J. Wu, X. Wang, F. Feng, X. He, L. Chen, J. Lian, and X. Xie. Self-supervised graph
learning for recommendation. In International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR), pages 726–735, 2021.

[28] L. Xia, C. Huang, C. Huang, K. Lin, T. Yu, and B. Kao. Automated self-supervised
learning for recommendation. In The ACM Web Conference (WWW), pages
992–1002, 2023.

[29] L. Xia, C. Huang, J. Shi, and Y. Xu. Graph-less collaborative filtering. In The ACM
Web Conference (WWW), pages 17–27, 2023.

[30] L. Xia, C. Huang, Y. Xu, J. Zhao, D. Yin, and J. Huang. Hypergraph contrastive
collaborative filtering. In International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), pages 70–79, 2022.

[31] X. Xia, H. Yin, J. Yu, Q. Wang, G. Xu, and Q. V. H. Nguyen. On-device next-item
recommendation with self-supervised knowledge distillation. In International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR), pages 546–555, 2022.

[32] T. Yao, X. Yi, D. Z. Cheng, F. Yu, T. Chen, A. Menon, L. Hong, E. H. Chi, S. Tjoa,
J. Kang, et al. Self-supervised learning for large-scale item recommendations. In
ACM International Conference on Information & Knowledge Management (CIKM),
pages 4321–4330, 2021.

[33] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec. Graph
convolutional neural networks for web-scale recommender systems. In ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD),
pages 974–983, 2018.

[34] J. Yu, H. Yin, X. Xia, T. Chen, L. Cui, and Q. V. H. Nguyen. Are graph augmen-
tations necessary? simple graph contrastive learning for recommendation. In
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR), pages 1294–1303, 2022.

[35] A. Zhang, W. Ma, X. Wang, and T.-S. Chua. Incorporating bias-aware margins
into contrastive loss for collaborative filtering. Advances in Neural Information
Processing Systems (NeurIPS), 35:7866–7878, 2022.

[36] J. Zhang, X. Shi, S. Zhao, and I. King. Star-gcn: stacked and reconstructed
graph convolutional networks for recommender systems. In International Joint
Conference on Artificial Intelligence (IJCAI), pages 4264–4270, 2019.

[37] S. Zhang, Y. Liu, Y. Sun, and N. Shah. Graph-less neural networks: Teaching
old mlps new tricks via distillation. In International Conference on Learning
Representations (ICLR), 2021.

[38] S. Zhang, L. Yao, A. Sun, and Y. Tay. Deep learning based recommender system: A
survey and new perspectives. ACM computing surveys (CSUR), 52(1):1–38, 2019.

WSDM ’25, March 10–14, 2025, Hannover, Germany Guoxuan Chen, Lianghao Xia, and Chao Huang

A Ethical Considerations
A.1 Ethical Implications
The proposed research on LightGNN, a distillation-based GNN
pruning framework, introduces innovative techniques for model
compression in Graph Neural Networks (GNNs) to reduce model
complexity while preserving recommendation accuracy. While the
advancements in this field are promising, there are ethical implica-
tions that need to be considered since graph-based recommendation
systems often rely on sensitive user interaction data.
• Privacy Considerations. GNN’s utilization of user interaction
data raises concerns about privacy. The pruning process must
safeguard against unauthorized access to sensitive user infor-
mation contained within the graph data. Besides, the removal
of edges and embedding entries during compression should be
conducted in a manner that does not inadvertently expose or
retain identifiable user information.

• Security and Safety. Pruning components based on learnable
algorithms may introduce vulnerabilities that could compromise
the integrity of the recommendation system, potentially leading
to data breaches or manipulation. Moreover, aggressive pruning

to achieve high compression rates might compromise the robust-
ness of the GNNmodel, making it more susceptible to adversarial
attacks or unexpected behaviors.

A.2 Mitigation Strategies
Below, we introduce some possible mitigation strategies.
• Privacy-Preserving Techniques. Implement encryption and
anonymization methods to protect user data while ensuring that
the pruning process does not compromise individual privacy.

• Security Audits. Conduct thorough security assessments to
identify and address potential vulnerabilities introduced by the
pruning framework, ensuring data integrity and system security.

• Transparency and Accountability. Maintain transparency in
the pruning process, providing clear explanations of how compo-
nents are pruned and enabling users to understand and challenge
the recommendations made by the system.

In conclusion, while LightGNN shows promise in reducing model
complexity while retaining recommendation performance, it is im-
portant for researchers and developers to prioritize ethical consid-
erations to mitigate potential negative societal impacts and uphold
the integrity and fairness of AI systems in recommendation.

	Abstract
	1 Introduction
	2 GNN-based Collaborative Filtering
	3 Methodology
	3.1 Graph Neural Network Pruning
	3.2 Hierarchical Knowledge Distillation
	3.3 Optimization with Uniformity Constraint

	4 Evaluation
	4.1 Experimental Settings
	4.2 Performance Comparison (RQ1)
	4.3 Efficiency Test (RQ2)
	4.4 Ablation Study (RQ3)
	4.5 Influence of Pruning Ratios (RQ4)
	4.6 Anti-Over-Smoothing Effect Study (RQ5)
	4.7 Noise and Redundancy Identification (RQ6)

	5 Related Work
	5.1 Graph Neural Recommender Systems
	5.2 Model Compression for Graph Models

	6 Conclusion
	References
	A Ethical Considerations
	A.1 Ethical Implications
	A.2 Mitigation Strategies

